Atmosphere: Meteorology

Characteristics of Atmosphere

	Study of atmo	sphere is called		
nitrogen 78%		– general condi time & place	tion of atmospher	e at a particular
Other including argon - 0.9% - Gases in the air & CO ₂ - 0.037%	– general weather conditions over many years			
Our atmosphere is a mixt	ure of chemical ele	ments and compounds.	The most abunda	nt element is
and 1	the most abundant of	compounds are	and	l
03 () is another imp	portant substance in our a	atmosphere. It is	important in the upper
atmosphere to protect us	from			, which cause
	and can lead to			
Oxygen in the Atmosph	ere:			
Maintained by		that		the atmosphere.
Nitrogen in the Atmosp	here:	dt dy	nais breathe in gen and breathe carbon dioxide.	
Nitrogen moves from	to	to	and then	back again to the

Atmospheric Pressure:

Ratio of ______ to the area of the surface on which it presses.

- At higher altitudes, ______ air therefore ______ weight which means ______ pressure
- At lower altitudes, ______ air therefore ______ weight which means ______ pressure For example:

_____ – instrument used to measure atmospheric pressure Two Types: 1. ______ Barometer – uses liquid mercury

(Std. Pressure = 760 mm Hg = 1 atm)

2. _____ Barometer – "without liquid", no Hg used – it's a sealed

container without air

LAYERS OF ATMOSPHERE

No distinct changes in pressure BUT do see changes in ______ with increasing

- layer closest to earth
 - Temp. decreases as you go higher
 - Layer where weather occurs
 - contains almost all atmospheric ozone
 - temperature increases as you go higher
 - temperature decreases as you go Higher
 - coldest layer of atmosphere
 - temperature increases as you go Higher
 - difficult to measure temp. here because air is so thin
 - contains 2 regions:

- _____ – transmits

radio waves

-______ – last part of

our atmosphere, borders with space

AIR POLLUTION

Laige DEU ID UIVII AI CA

Any substance in the atmosphere that is h	harmful		
(examples:			
	– gases from bur	ning fossil fuels combine wi	th water in
	atmosphere an	d form acids which fall as ra	in or snow
– general term for ai	ir pollution, combined to	erm for smoke and fog	
0	1 /		
Solar Energy & Atmosphere			
– all ±	forms of energy that tra-	vel through space as waves	
• is the form that	at we see, but most is	t	o human eyes.
• All of these make up the		and are referred to as	
	·		
	1		CC (1
,,	, and		affect th
path of radiation from the sun and cause	them to	·	
lar Energy			
100% 30% r	reflected by	nercent absorbed	by Farth
clouds earth'	s, dust, air, 's surface		by Latin
20% absorbed by		percent absorbed	by clouds
clouds, dust, & gases		percent reflected	by clouds
50% absorbed by			erouus
Earth s surface			
– part of	solar radiation reflected	l by a surface	
			1.2
	_ – process in which atm	nosphere traps infrared rays (over earth's surfa
•	for life	e on earth as we know it	
Radiation strikes more	at the	ar	id is more
at t	the poles.		
	Same	amount of	
Incoming Solar Radiation Large Distribution Area	sprea	d out over a larger area, ther	efore the
Northern	Ĩ	U	are
Incoming Solar Radiation	lowor		un c
Southern Small Distribution Area	lower		
Hemisphere			
Incoming Solar Radiation			

– energy transfer due to unequal heating Winds	l at
Winds	l at
the created a general movement of air worldwide.	1 at
the created a general movement of air worldwide.	
<u>Global Winds</u>	
Spinning/rotation of earth causes winds to move in the N. hemisphere and	1
in the S. hemisphere. This is known as the	<u> </u>
between 30° and 0° latitude	
• Meet at the equator in a "no wind" zone 60° / Easterlies Polar Front Warmer air rises	
called the Low Pressure	
• At other edge of the Trade Winds is 30° Westerlies Air desce	inds
another low/no wind belt known as the	Suie
NE Trade Winds	
WHY? were thrown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ir rise: essure
overboard to save water when ships	
weren't moving 30° Westerlies Air descent High Press	ds ure
– located between	
40° – 60° latitude 60° Easterlies Polar Front Warmer air rises	
– from about 60° 90°	
latitude to the poles	
- bands of high speed winds that exist in upper troposphere (can affect air tra	vel)
LOCAL WINDS: often referred to as breezes, Named for where the winds come	
Breeze – dry cool breeze FROM land to sea	
Breeze – dry cool breeze FROM sea to land	
Breeze – during the day, warm air FROM the valley moves up the slope	
Breeze – during the night cool air FROM the mountain moves down into the valley	.7

Water in the Atmosphere

Atmospheric Moisture

Water in the atmosphere exists in two forms other than water vapor. It can be or _____ – phase change from liquid to gas – solid directly to gas (ex. dry ice at Halloween - vapor directly to a solid (ex. frost) – measure of amount of water vapor in the atmosphere – air holds all the water vapor it possibly can - ratio used to express amount of water vapor in the atmosphere Amount of water in the atmosphere with the amount of water that ٠ be in the atmosphere. instrument used to measure relative humidity _____ – actual amount of moisture in the air - temperature to which air must be cooled to reach saturation. If the dew point is below freezing, then occurs and ٠ forms. (direct from to) Water Vapor (gas) heat absorbed Ice Water solid) (liquid) heat released

Clouds & Fog

Result from condensation of ______ throughout the large volume of ______. Requires the presence of solid particles, called ______.

Air temperature changes as the air expands and is compressed. These changes are known as

<u>3 Main Cloud Types</u>

- sheetlike clouds

- Low base (almost at the surface)
- Warm air lies above cool air
- Variations = _____, which are dark clouds that do produce heavy rain

_____ – puffy vertical clouds

• Forms as warm moist air rises and cools

= variation of

high, dark storm clouds

_____ – highest clouds

- Wispy and feathery
- Halo can be seen around the sun or moon, if

viewed thru a cirrostratus cloud (light rays

bend as they hit ice crystals)

_____ – a cloud that formed at the surface

Precipitation

_ – any moisture that falls from the air to earth's surface

FORMS:

LIQUID	Liquid precipitation
LIQUID	Raindrops smaller than 0.5mm
SOLID	Most common solid, freezing up high and all the way to the ground
SOLID	Rain falls thru freezing layer at the ground
SOLID	Rain falls and only freezes upon contact with a solid surface (glaze ice)
SOLID	Lumps of ice form as winds blow frozen substance back up into clouds repeatedly

Causes of Precipitation:

A cloud produces	when its droplets or ice crystals become
to fall as or	·
	– combination of different size water droplets to form large droplets that
	fall as raindrops
	– process where water droplets remain liquid at temperatures below zero
	degrees Celsius
	– special condensation nuclei that have crystalline structure similar to
	ice (required for precipitation to fall)
	– process when freezing nuclei are artificially added to clouds to force
	precipitation to occur
WHY WOULD THIS B	E USEFUL???

Contraction of the second seco

- instrument used to measure amount of rainfall

Weather

Air Masses

Differences in air pressure worldwide create ______. Air moves from areas of

____ to areas of ______

- large body of air with uniform/same moisture and temperature

Four Main Types of Air Masses:

NAME	ABBREV.	DESCRIPTION

North American Air Masses:

3 Polar Air Masses:

- cP Canadian from Canada into the US
- mP Pacific from the Pacific near Alaska into the northwestern US
- mP Atlantic from the N. Atlantic into the New England states

4 Tropical Air Masses:

- cT only in summer, from southwest US to the northeast US
- mT Gulf froms in the Gulf of Mexico and moves to the eastern US
- mT Atlantic forms in the tropical N. Atlantic and travels to the eastern US
- mT Pacific forms in the N. Pacific and rarely reach land

Air-mass source regions for North America. (Courtesy of Ward's Natural Science Establishment, Inc., Rochester, N.Y.)

Fronts

 When two unlike air masses meet,
 ______ differences keep them ______.

The boundary that is formed between the air masses is called a ______.

Four Main Types of Fronts: Front:	Cold Front
• Cold air mass overtakes a warm air mass & lifts it in the air	Warm Front
Produces storms	
• Squall line – long line of heavy thunderstorms	Stationary Front
Front: warm air mass overtakes a cold air mass & rises over it	
Front: 2 air masses meet, but neither is displaced	Occluded Front
Front: fast moving cold front lifts a warm front completely off the ground	
refers to the region where the co	old air at the meets the
These areas help create the beginnings of the low pressure storms kno	 wwn as
– large storms that start typically	along cold or stationary fronts
• big influence of middle latitude weather in the US	
– large stormsthat center on areas	of high pressure
 CAROLINA Severe tropical storm where with Develop over warm tropical och Most destructive storms Called 	: nds exceed km/hr eans
• Called	

_____ – storm accompanied by thunder, lightning and strong winds

_____ – loud noise produced by the rapid expansion and collapse of air

(caused by electricity rapidly heating the air with lightning)

- whirling, funnel-shaped cyclone
- smallest, most violent, and shortest-lived severe storm
- forms when thunderstorm meets high altitude horizontal winds which causes air to rotate

 tornadoes over the ocean (or a very large body of water)

Weather Instruments

Forecasting the Weather

_____ – (scientists that study the weather)

They prepare weather maps that plot all the weather data gathered from many different sources.

_____ – lines drawn to connect points of equal atmospheric pressure

- closely spaced = _____ wind speeds
- far apart = low change and _____ winds
- circles = high (H) or low (L) pressure areas

